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Abstract

We consider the self-similar fragmentation equation with a superquadratic fragmentation
rate and provide a quantitative estimate of the spectral gap.
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1 Introduction

The fragmentation equation

(1)

o f(t,x) = Ff(t,x), t>0, z>0,
f(0,z) = fin(z), x>0

is a model that describes the time evolution of a population structured with respect to the size
x of the individuals.
The key term of the model is the fragmentation operator F, defined as

Fiw)= [ by, 2)f(y) dy — B(a)f(z). (2)

The fragmentation operator quantifies the generation of smaller individuals from a member of
the population of size x: the individuals split with a rate B(x) and generate smaller individuals
of size y € (0, x), whose distribution is governed by the kernel b(x,y).

Models involving the fragmentation operator appear in various applications. Among them we
can mention crushing of rocks, droplet breakup or combustion [2] which are pure fragmentation
phenomena, but also cell division [14], protein polymerization [9] or data transmission proto-
cols on the web [3], for which the fragmentation process occurs together with some “growth”
phenomenon.
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In order to ensure the conservation of the total mass of particles which may occur during the
fragmentation process, the coefficients B(x) and b(y, x) must be linked through the relation

/0 " eb(y, z) dz = yB(y). (3)

This assumption ensures, at least formally, the mass conservation law

Vit > 0, /000 zf(t,z)de = /OOO z fin(z) dz := pin. (4)

Moreover, it is well known that xf(¢,2) converges to a Dirac mass at x = 0 when ¢t — +o0.
Usually, the various contributions that are available in the literature restrict their attention to
coefficients which satisfy the homogeneous assumptions (see [8] for instance)

B(z)=2", >0, and  b(y,z)= y7_1p<§), (5)

where du(z) := p(z)dz is a positive measure supported on [0, 1] which satisfies

/Olzdu(z) _1

These hypotheses guarantee that the relation (3) is verified.
From a mathematical point of view, it is convenient to perform the (mass preserving) self-
similar change of variable

fltz) = (14 t)2/”g<i log(1+1), (1 +1)/z),

or, by writing ¢ in terms of f,
g(t,z) = e (e —1,e ).

It allows to deduce that g(t, z) satisfies the self-similar fragmentation equation

{ 0y g+ 0x(29) + g =~Fg, t>0, x>0, )

g((),:v) = fin(x), x> 0.

Equation (6) belongs to the class of growth-fragmentation equations and it admits — unlike
Equation (1) — positive steady-states [7, 8, 15].

Denote by G the unique positive steady-state of Equation (6) with normalized mass, i.e. the
solution of

(zG) + G =y FG, G >0, / zG(z)de = 1.
0

Then it has been proved (see [8, 12]) that the solution g(t,z) of the self-similar fragmentation
equation (6) converges to pinG(x) when ¢ — +o0.

Coming back to the fragmentation equation (1), this result implies the convergence of f(¢, z)
to the self-similar solution (¢,z) — pm(1 + t)¥7G((1 4+ t)"/7z) and hence the convergence of
xf(t,z) to a Dirac mass dy.

In order to obtain more precise quantitative properties of the previous equation, one can
wonder about the rate of convergence of g(¢,z) to the asymptotic profile G(z). Many recent



works are dedicated to this question and prove, under different assumptions and with different
techniques, an exponential rate of convergence for growth-fragmentation equations [1, 3, 4, 5, 6,
11, 13, 15].

Nevertheless, to our knowledge the only results about the specific case of the self-similar
fragmentation equation are those provided by Céceres, Canizo and Mischler [4, 5]. They prove
exponential convergence in the Hilbert space L?((x + 2*) dx) for a sufficiently large exponent k
in [5], and in the Banach space L'((z™ + M) dz) for suitable exponents 1/2 <m < 1 < M < 2
in [4]. For proving their results, the authors of the aforementioned articles require the measure
p to be a bounded function (from above and below) and the power v of the fragmentation rate
to be less than 2.

The current paper aims to obtain a convergence result for super-quadratic rates, namely when
v > 2. We obtain exponential convergence to the asymptotic state by working in the weighted
Hilbert space L?(z dz), under the following assumptions:

v >2 and p(z) =2. (7)

The fact that p(z) is a constant means that the distribution of the fragments is uniform: the
probability to get a fragment of size x or x’ from a particle of size y > x, 2’ is exactly the same.
Then the condition fol zp(z)dz = 1 imposes this constant to be equal to 2, meaning that the
fragmentation is necessarily binary. Our assumption on p is more restrictive than in [4, 5], but
in return we get a stronger result in the sense that we obtain an estimate of the exponential
rate. Now we state the main theorem of this paper.

Theorem 1.1. Let gy, € L'(xdx) N L?(xdx) and let g € C([0,00), L*(zdx)) be the unique
solution of the self-similar fragmentation equation (6) with initial condition gy, and with frag-
mentation coefficients satisfying (5) and (7), that is

B(z) =27, ~v>2 and b(y,z) =2y L.
Then the following estimate holds:

Hg(t’ ) - pinG||L2(a:dx) < ||gir1 - pinGHLz(xdx) e_ta t>0.
2 Preliminaries
Define the suitable weighted spaces
Li = LP(RT, 2% dz) forp>1, k eR, and I/Vl11 = WHY(RY, z dx).

For u € L} we denote moreover by

the primitive of xu(z) which vanishes at = = 0.

Now we recall the following existence and uniqueness result of a solution to the fragmentation
equation, easily deduced from [8], Theorems 3.1-3.2 and Lemma 3.4:



Theorem [8]. If
B(z)=2", 722 and  b(y,z)=2y""",

for any fin € L% N L%, there exists a unique solution f € C’([O,oo);L%) N L}OC([O,OO);L%+A/) to

the fragmentation equation (1) such that the mass conservation (4) is satisfied. If, moreover,

fin€ 2= Lh—v N Wll’l, the associated solution g to the self-similar fragmentation equation is

such that
(g(t,"))t>0 is uniformly bounded in E.

In the following lemma we give some useful properties of the set

I
E=Li, nw

oo
Eo = {u €z, / zu(x) do = 0}.
0
Lemma 2.1. The set = = L}

1l
14+ MW7 satisfies

and of the subset

G ez, ECC’(O,oo)ﬁLlﬁlgﬁLgJrv and
Yu € E, lim zu(x) = lim zu(z) =0.
z—0 T—r+00

Moreover for any function u € Eqg the following inequality holds:
M <z 7 1.
Ve >0, M) <2 ullgy,

Proof. The fact that the steady-state G belongs to Z is a consequence of the estimates in [1].
In the case when p(z) = 2 it can also be deduced from the explicit formula (see [7])

Y Y
Glr)==——¢"
)= 12/
where I' is the Euler Gamma function.

For v > 0 and u € E such that [;° zu(x) dz = 0 we can write for 2 > 0

M(2)] = '— [t dy' <o [Ti )] an

3 Proof of the main theorem

Define the self-similar fragmentation operator Lu := —(zu)’ — u + vFu and denote by

the canonical scalar product in L% Theorem 1.1 is a consequence of the following result.



Theorem 3.1. Under Assumptions (5) and (7), i.e. for
B(z) =27, ~v>2 and b(y,z) =2y L,

we have
Yu € =, (u, Lu) < —HuHi%
Proof. Using Lemma 2.1 we can deduce, for u € =y,

(u, (zu)) = /000 xu(x)(xu(x))/dx = ;/Ow((xu($))2)/dx =0

and

O]

Proof of Theorem 1.1. Assume first that ¢gi, € =. From Theorem 3.1 we obtain the differential
inequality

d
2190t ) = pnGlize < =llg(t, ) — pinGll 2

which gives the result. Then we may remove the additional assumption g, € =. O

4 Conclusion

We have proved a spectral gap result for the self-similar fragmentation operator £ with a su-
perquadratic fragmentation rate B(x). More precisely we have obtained that this spectral gap is
larger than 1. This is a new result concerning the long-time behaviour of the fragmentation equa-
tion (1). It also allows to extend the results obtained in [10] for non-linear growth-fragmentation
equations.
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